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Abstract
We consider the weak localization correction to the conductance of a ring
connected to a network. We analyse the harmonics content of the Al’tshuler–
Aronov–Spivak (AAS) oscillations and we show that the presence of wires
connected to the ring is responsible for a behaviour different from the one
predicted by AAS. The physical origin of this behaviour is the anomalous
diffusion of Brownian trajectories around the ring, due to the diffusion in
the wires. We show that this problem is related to the anomalous diffusion
along the skeleton of a comb. We study in detail the winding properties
of Brownian curves around a ring connected to an arbitrary network. Our
analysis is based on the spectral determinant and on the introduction of an
effective perimeter probing the different time scales. A general expression of
this length is derived for arbitrary networks. More specifically we consider the
case of a ring connected to wires, to a square network and to a Bethe lattice.

PACS numbers: 73.23.−b, 73.20.Fz, 72.15.Rn, 02.50.−r, 05.40.Jc

1. Introduction

At a classical level, a network made of diffusive wires can be described as an ensemble of
classical resistances. Quantum corrections bring a small sample specific contribution whose
disorder average is called the weak localization (WL) correction. This contribution is sensitive
to a magnetic field and makes the average conductivity of a phase coherent ring be a periodic
function of the magnetic flux φ through the ring with periodicity φ0/2, where φ0 = h/e is
the flux quantum. This is the so-called Al’tshuler–Aronov–Spivak (AAS) effect [1]. The case
of an isolated ring was considered by AAS who showed that the average correction to the
classical conductivity varies as

�σ(θ) = −e2

h
Lϕ

sinh(L/Lϕ)

cosh(L/Lϕ) − cos(θ)
, (1)
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where L is the perimeter and θ = 4πφ/φ0 is the reduced flux. Phase breaking mechanisms
are taken into account through the characteristic length Lϕ called the phase coherence length.
The harmonics of the oscillations

�σ(n) =
∫ 2π

0

dθ

2π
�σ(θ) e−inθ = −e2

h
Lϕ e−|n|L/Lϕ (2)

decay exponentially with the perimeter L of the ring and the order n of the harmonic3. Relation
(2) was derived for an isolated ring and it is not clear, when studying the transport through a
ring connected by wires to reservoirs, how this correction to the conductivity is related to the
correction to the conductance. Moreover the presence of the connecting wires can seriously
modify the harmonics content of the AAS oscillations. In this paper we show that, if the
perimeter L of the ring is much smaller than Lϕ and if the connecting wires are much longer
than Lϕ , the nth harmonic decreases like exp −n

√
NaL/Lϕ , that is faster than (2). Na is the

number of wires attached to the ring.
The paper is organized as follows: in section 2, we briefly recall the general expression

of the WL correction on a network and we present some results for the conductance through
a connected ring. The rest of the paper is devoted to the analysis of the new behaviour of the
harmonics. This is achieved by studying in detail the winding properties of Brownian curves
around a ring connected to a network. In section 3 we present our general method, based on the
spectral determinant which encodes the necessary information on the network. In section 4,
we consider specifically the question of a ring connected to one or several wires. We show
that the new behaviour exp −n

√
NaL/Lϕ is the signature of an anomalous diffusion around

the ring. In section 5, we study the case where the ring is connected to an arbitrary network.
We relate the winding properties around the ring to the recurrent character of the Brownian
motion in the network.

2. Quantum transport through a connected ring

Recently, we have obtained a general expression for the WL correction on a network [2, 3].
Let us recall first how it reads for a wire. The classical conductance of a wire of section s and
length L is given by the Ohm’s law Gcl = σ0s/L where σ0 is the Drude conductivity. This
result can be rewritten in terms of the total transmission through the wire, i.e. the dimensionless
conductance, T cl

wire = αdNc�e/L, where Nc is the number of channels, �e the elastic mean
free path and αd a numerical constant depending on the dimension (α1 = 2, α2 = π/2 and
α3 = 4/3). The interferences between reversed trajectories are described by the so-called
cooperon Pc(x, x) which measures the return probability for a diffusive particle and which is
the solution of a diffusion equation that we will recall in section 3. These interferences give
rise to the WL correction which is expressed as

�Twire = − 2

L2

∫ L

0
dxPc(x, x). (3)

More generally, for a network attached to leads α and β as shown on figure 1, the
classical transmission coefficient is obtained by classical Kirchhoff laws and it has the form
T cl

αβ = αdNc�e/Lαβ where the equivalent length Lαβ is the function of the lengths of the wires,
the topology of the network and the way it is connected to external reservoirs. Note that Lαβ

is simply proportional to the equivalent resistance.

3 Note that �σ(n) = �σ(−n) is a general property related to the symmetry �σ(θ) = �σ(−θ) and we will simply
omit the absolute value in the following.
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Figure 1. A network connected to reservoirs and pierced by a magnetic flux φ. The wavy lines
represent connection to large contacts (external reservoirs).
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Figure 2. A mesoscopic ring connected at two reservoirs.

On such a network, because of the absence of translation invariance, we have shown
recently that the cooperon must be properly weighted when integrated over the wires of the
networks to get the WL correction to the transmission coefficient. Equation (3) generalizes
as [2]

�Tαβ = 2

αdNc�e

∑
(µν)

∂T cl
αβ

∂lµν

∫
(µν)

dxPc(x, x). (4)

The sum runs over all wires (µν) of the network. The cooperon is integrated over each wire
(µν), with a weight which is simply the derivative of the classical transmission with respect
to its length lµν . This WL correction depends on the lengths of the wires, the phase coherence
length Lϕ , the magnetic field and the topology of the network.

We consider the transport through the ring of figure 2. The classical transmission reads
T cl

ring = αdNc�e

la+lc//d +lb
, where l−1

c//d = l−1
c + l−1

d . To simplify the calculations, we consider below the
symmetric cases la = lb and lc = ld = L/2. The calculation of the WL correction �Tring(θ),
given by (4), requires the construction of the cooperon in the network, explained in [2, 3]. We
do not give further details nor the full result [3] and we only present two limiting cases for the
Fourier decomposition �T (n)

ring:

• The weakly coherent network Lϕ � L, la .

�T (n)
ring � − LLϕ

4(2la + L/4)2

(
2

3

)2n

e−nL/Lϕ for n > 0. (5)

We get an exponential behaviour coinciding with the one predicted by AAS. The factor
(2/3)2n is related to the probability to cross 2n times a vertex of coordinence 3 [7]. This
result shows that the connecting wires play an important role and that the determination
of Lϕ from ratio of harmonics using formula (2) can lead to a wrong estimate.
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• The mesoscopic ring connected to long wires L � Lϕ � la .

�T (n)
ring � −

(
Lϕ

2la

)2
√

L

2Lϕ

e−n
√

2L/Lϕ for n > 0. (6)

The harmonics decay presents a strikingly different behaviour from the one given by
AAS.

The difference between the behaviours (5) and (6) can be understood in the following
way: the weak localization correction involves the diffusive trajectories for times t � L2

ϕ/D.
It is well known that the behaviour (5) is a direct consequence of the diffusive behaviour of
the winding number n2 ∼ Dt/L2. Now we shall see in section 4 that, in the presence of the
arms, a diffusive trajectory for a time t ∼ L2

ϕ

/
D � L2/D spends most of the time in the

arms. Consequently the winding around the ring is slowed down. It becomes sub-diffusive
and we show that it scales as n2 ∼ √

Dt/L. This anomalous diffusion leads to the behaviour
(6). We shall see that it can be described as a normal diffusion for an effective perimeter
Leff ∼ √

LLϕ � L.
The two following sections present a rigorous presentation of this discussion.

3. Winding of Brownian trajectories and spectral determinant

In this section, we recall how the harmonics of the WL correction, �T (n)
ring, can be related to

the winding properties of diffusive trajectories around the ring. For this purpose, we introduce
the probability to start from a point x and come back to it after a time t having performed n
windings around the loop. This probability can be written with a path integral as

Wn(x, x; t) =
∫ x(t)=x

x(0)=x

Dx(τ) e− 1
4

∫ t

0 dτ ẋ(τ )2
δn,N [x(τ)], (7)

where N [x(τ)] is the winding number of the diffusive trajectory x(τ). We have chosen a
diffusion constant equal to unity D = 1. If we write δn,N = ∫ 2π

0
dθ
2π

ei(N−n)θ , the coupling of
the winding number to the conjugate parameter θ in the action is interpreted as the coupling to
a magnetic flux. The Laplace transform with respect to time relates the probability Wn(x, x; t)

to the cooperon Pc(x, x):∫ ∞

0
dt Wn(x, x; t) e−γ t =

∫ 2π

0

dθ

2π
e−inθ

∫ ∞

0
dt e−γ t

∫ x(t)=x

x(0)=x

Dx e− 1
4

∫ t

0 dτ ẋ2+i
∫ t

0 dτ ẋA(x) (8)

=
∫ 2π

0

dθ

2π
e−inθ Pc(x, x) (9)

with A(x) = θ/L for x inside the ring and A(x) = 0 if x is outside. The cooperon Pc(x, x ′)
is solution of a diffusion-like equation

[
γ − D2

x

]
Pc(x, x ′) = δ(x − x ′) where the covariant

derivative is Dx = d
dx

− iA(x). In the WL theory, the cooperon describes the contribution
of quantum interferences that are limited by phase breaking mechanisms. In this respect, the
Laplace parameter γ plays the role of a phenomenological parameter that selects the diffusive
trajectories for times t < 1/γ . This parameter is related to the phase coherence length Lϕ that
gives the length scale over which quantum interferences can occur, by γ = 1

/
L2

ϕ . The nth
harmonics of the WL correction �T (n)

ring is given by an integral over x of the Laplace transform∫ ∞
0 dtWn(x, x; t) e−γ t . The integration over the network is performed by weighting the wires

with the coefficients given in equation (4).
The relation between WL and properties of the Brownian motion was formulated in other

works such as [4, 5].
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3.1. Probability averaged over the network

First, we do not consider the dependence on the initial point x and average over it. We define
Wn(t) = ∫

dx Wn(x, x; t). In order to study this quantity it is useful to introduce the spectral
determinant, formally defined as S(γ ) = ∏

n(γ + En(θ)), where {En(θ)} is the spectrum of
the operator −D2

x . The spectral determinant is related to the cooperon in the following way:∫
dxPc(x, x) = Tr

{
1

γ−D2
x

} = ∑
n

1
γ +En

= ∂
∂γ

ln S(γ ). Therefore the probability Wn(t) can be
conveniently written as∫ ∞

0
dtWn(t) e−γ t =

∫ 2π

0

dθ

2π
e−inθ ∂

∂γ
ln S(γ ). (10)

The interest in introducing the spectral determinant is that it is a global quantity encoding
all information about the spectrum. This approach is especially efficient for networks thanks
to the compact expression of S(γ ) obtained in [6]: it can be related to the determinant of a
finite-size matrix that encodes the information on the topology of the networks, the lengths
of the wires, the magnetic fluxes and the way the network is connected to external reservoirs.
This relation is briefly recalled in appendix A.

3.2. Probability for a fixed initial condition

It is also interesting to study the probability Wn(x0, x0; t) for n windings in a time t when the
initial condition x0 is fixed. This requires some local information which is obtained from the
construction of Pc(x0, x0) inside the network (the expression can be found in [3]). We propose
here a method to obtain this local information still using the spectral determinant. This latter
encodes a global information since it results from a spatial integration of the cooperon over
the network. It is related to a sum over the eigenvalues of the Laplace operator

∑
n

1
γ +En

.
On the other hand, Pc(x0, x0) requires some local information on the eigenfunctions. In
order to extract this local information we introduce the modified cooperon P (λ0)

c , solution of[
γ − D2

x + λ0δ(x − x0)
]
P (λ0)

c (x, x ′) = δ(x − x ′). The corresponding spectral determinant
is ∂γ ln S(λ0)(γ ) = ∫

dxP (λ0)
c (x, x). Its expansion in powers of the parameter λ0 leads to:

∂γ ln S(λ0)(γ ) = ∂γ ln S(γ ) + λ0∂γ Pc(x0, x0) + O
(
λ2

0

)
. The cooperon at x0 can be obtained by

computing the spectral determinant S(λ0)(γ ) for a δ added at x0:

Pc(x0, x0) = d

dλ0
ln S(λ0)(γ )

∣∣∣
λ0=0

, (11)

and inserted in (9). For a network, the computation of S(λ0)(γ ) is especially simple: λ0

is interpreted as the parameter involved in the boundary condition at a vertex at x0 (see
appendix A).

4. Winding around a ring with an arm

In this section, we study how the winding properties inside a ring are affected by the presence
of an arm. We first recall the simple case of the isolated ring and consider the case of the ring
with one arm (figure 3(a)) for different kinds of boundary conditions at the end of the arm.

4.1. Spectral determinant and winding properties

A reminder: the isolated ring. In order to illustrate our formalism, we start by recalling
a few simple results about the isolated ring that will be useful for the following. The
quantity at the basis of our analysis is the spectral determinant that reads for the isolated
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λ1

L

b
0

1

(a) (b)
...

L

b

...

Figure 3. Left: a network with one loop and one arm. A general boundary condition (λ1) is
chosen at vertex 1. λ1 = 0 describes a reflecting boundary (isolated network). λ1 = ∞ describes
an absorbing boundary (connection to a reservoir). Right: the study of the winding in the ring is
equivalent to study the displacement along the skeleton of a comb.

ring: S(γ ) = 2(cosh
√

γL − cos θ). Relation (10) shows that the Laplace transform of the

probability Wn(t) requires a Fourier transform of ∂
∂γ

ln S(γ ) = L
2
√

γ

sinh
√

γL

cosh
√

γL−cos θ
. We obtain∫ ∞

0
dt Wn(t) e−γ t = L

2
√

γ
e−n

√
γL, (12)

which is the exponential behaviour recalled in equation (2). It is worth noting that the
translation invariance of the system implies that Wn(t) = LWn(x, x; t). The inverse Laplace
transform leads to

Wn(x, x; t) = 1

2
√

πt
e− (nL)2

4t (13)

which characterizes normal diffusion in the ring. We can study the scaling of the winding
number with time by computing nt =

√
〈n2〉t , where 〈· · ·〉t denotes averaging over all

trajectories for a time t. The ring possesses a characteristic time scale: the Thouless time. In
units such that D = 1, it reads τL = L2. It is the time needed by a diffusive trajectory to
explore the ring. In the short time limit t � τL, we obtain nt � √

2 exp −L2

8t
and in the long

time limit t � τL we get nt � √
2t1/2/L.

Dirichlet boundary at the end of the arm. We now consider the winding in a ring with an arm.
A Dirichlet boundary at the end of the wire describes absorption (connection to a reservoir).
In terms of the parameter introduced in appendix A, this corresponds to λ1 = ∞. The spectral
determinant of the ring of figure 3(a) is easily obtained (see [3, 6, 7] and appendix A). It
presents a structure similar to the one of the isolated ring,

√
γ SDir(γ ) = 2 sinh

√
γ b

[
cosh

√
γLDir

eff − cos θ
]
, (14)

where we have introduced LDir
eff , defined by

cosh
√

γLDir
eff = cosh

√
γL + 1

2 sinh
√

γL coth
√

γ b. (15)

Interestingly, the flux dependence S(γ ) ∝ cosh
√

γLeff − cos θ immediately leads to the
behaviour

∫ ∞
0 dtWn(t) e−γ t ∝ e−n

√
γLeff . In general the length Leff depends on γ . Since γ

is the parameter conjugate to the time t, it probes times t ∼ 1/γ . Therefore Leff(γ ) is the
effective perimeter for winding trajectories at a time scale t = 1/γ .

In the limit b → 0 the spectral determinant becomes SDir(γ )|b=0 = sinh
√

γL/
√

γ which
is the result for a wire with Dirichlet boundary at its ends. The reservoir acting as a phase
breaker, the phase sensitivity is lost since the reservoir is now located in the ring.

Neumann boundary at the end of the arm. It is also interesting to study the spectral determinant
for Neumann boundary at the end of the arm, λ1 = 0, which describes a reflection of the
diffusive particle (isolated network). In this case [7]

SNeu(γ ) = 2 cosh
√

γ b
[
cosh

√
γLNeu

eff − cos θ
]
, (16)
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where the effective perimeter now reads

cosh
√

γLNeu
eff = cosh

√
γL + 1

2 sinh
√

γL tanh
√

γ b. (17)

In this case the limit b → 0 leads to the spectral determinant of an isolated ring
SNeu(γ )|b=0 = 2(cosh

√
γL − cos θ).

We now analyse the different behaviours in a time representation to understand their
physical significance in the diffusion problem. To analyse the diffusion at time t, we have to
consider γ = 1/t . In the following we keep using the notation γ = 1

/
L2

ϕ for convenience.
In addition to the Thouless time τL = L2 needed to explore the ring, there is a second
characteristic time τb = b2 which is the typical time required to explore the arm.

• Short times t � τL, τb (i.e. Lϕ � L, b). In this case, the arm is explored over a distance
smaller than the perimeter and the presence of the arm has a small influence. The precise
nature of the boundary condition is not felt when diffusing inside the loop, since the
trajectories encircling the loop do not have enough time to reach the end of the arm
(t � τb). This is reflected by the fact that LDir

eff = LNeu
eff in this limit. From expressions

(15), (17), we obtain the effective parameter Leff � L + Lϕ ln(3/2). We recover the
behaviour of the isolated ring nt � √

2 exp −L2

8t
.

• Intermediate times τL � t � τb (i.e. L � Lϕ � b). The particle can turn diffusively
many times around the loop but cannot explore the arm up to its end. This is a limit of an
infinitely long arm. As in the previous case, the boundary condition plays no role. From
(15), (17), the effective length is Leff � √

Lγ −1/4 = √
LLϕ . By using (10) we obtain∫ ∞

0
dtWn(t) e−γ t �

√
L

4γ 3/4
e−n

√
Lγ 1/4

, (18)

which leads to the harmonic content (6).4 The inverse Laplace transform gives

Wn(t) = θ(t)

√
L

4t1/4
χ

(
ξ = n

√
L

t1/4

)
, (19)

where χ(ξ) = 4
π

∫ ∞
0 du e−u4− 1√

2
ξu cos

(
1√
2
ξu + π

4

) = 4
π

Re
(
ei π

4
∫ ∞

0 du e−ϕ(u)
)

with

ϕ(u) = u4 + uξ e−i π
4 . The Heaviside function is denoted by θ(t). The function at

the origin is χ(0) = �(1/4)

π
√

2
while it presents an exponential tail:

χ(ξ) � 4√
6π

1

(ξ/4)1/3 e−3(ξ/4)4/3
for ξ � 1. (20)

As a result, the tail of the distribution behaves like

Wn(t) ∼ 1

t1/6n1/3
exp −c

n4/3

t1/3
, (21)

where c is a coefficient. We will see in section 4.4 that for a fixed initial condition
Wn(x, x; t) presents the same exponential behaviour with a different prefactor. This
expression shows that the winding number scales like nt ∝ t1/4.

• Large times τL, τb � t (i.e. L, b � Lϕ). In this regime, the diffusive trajectories can
explore the arm until its end and the precise nature of boundary condition matters.

For Neumann boundary condition, the expansion of (17) gives LNeu
eff � √

L(L + b). It
is interesting to point that since the arm is explored until its end, this result can be simply
obtained by replacing Lϕ by L + b in the result Leff � √

LLϕ obtained for L � Lϕ � b.

4 Note that only the exponential behaviour and the exponent of γ in the prefactor coincide in (6) and (18) since the
latter has been obtained by a uniform integration of the cooperon over the network.
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Since this effective perimeter does not depend on γ , it describes normal diffusion around
the ring. However, the diffusion constant is reduced due to the time spent in the arm
nt � √

2t1/2/
√

L2 + bL.
For Dirichlet boundary, from (15), the effective length reads LDir

eff � Lϕ

√
L/b. This

reflects a behaviour
∫ ∞

0 dt e−γ tWn(t) ∝ e−n
√

L/b independent on γ which originates from
the absorption at vertex 1. The winding number reaches a finite value at infinite time:
nt � √

2b/L.

We summarize these results in table 1.

4.2. Relation with the anomalous diffusion along the skeleton of a comb

We discuss specifically the regime τL � t � τb of an infinitely long arm. From (19), we have
seen that the winding number scales with the time like

nt ∝ t1/4. (22)

The prefactor can be obtained from the method explained in appendix B. We recall that the
winding in a ring without arm (normal diffusion) is nt � √

2t1/2/L. In the presence of
the arm, the Brownian trajectories can explore the arm over long distance when turning
around the ring. For a time scale t the effective perimeter of winding trajectories is
Leff(γ = 1/t) � √

Lt1/4. From this simple heuristic argument we recover the subdiffusive
behaviour nt ∼ t1/2/Leff ∼ t1/4/

√
L. We stress that ‘subdiffusion’ refers to the time

dependence of the winding number around the flux, and not to the motion inside the wires
which obeys normal diffusion. In summary the typical distance x explored by a diffusive
trajectory is always given by x ∼ √

Dt , but the typical distance explored inside the ring is

much smaller ntL ∼
√

L
√

Dt . Consequently, for a given winding number n, the typical
length of a trajectory is x ∼ √

Dt ∼ n2L. Most of the excursion is made in the arm.
This problem is similar to the known problem of the diffusion along the skeleton of a

comb: the diffusion in the ring is the periodization of the diffusion along the skeleton of the
comb (see figure 3). This problem has been studied by a different method in [8] and [9]
(note that [9] corrected a wrong assumption made in [8] about the nature of the distribution);
however, the power law in front of the exponential was not given. The problem of diffusion
along the skeleton of a comb belongs to a broader class of problems: the diffusion of a particle
along a line with an arbitrary distribution of the waiting time τ spent on each site. It was
shown that if the distribution of the waiting time presents an algebraic tail P1(τ ) ∝ τ−1−µ with
0 < µ < 1, the diffusion is subdiffusive with nt ∼ tµ/2 [10]. In the case of the diffusion in the
comb, the distribution of the trapping time by the arm is given by the first return probability
for the one-dimensional diffusion: P1(τ ) ∝ τ−3/2 and we recover nt ∼ t1/4.

4.3. The case of Na arms

By using the mapping between the diffusion inside the ring and in the comb we immediately
get the result for Na arms: the trajectory encounters Na arms for one turn, which corresponds to
Na steps of length L/Na in the comb. Then the result for Na arms is obtained by a substitution
n → nNa and L → L/Na which leads to

∫ ∞
0 dtWn(t) e−γ t �

√
L/Na

4γ 3/4 e−n
√

NaLγ 1/4
. For Na = 2

the exponential dependence agrees with (6).

• Na arms attached regularly. The result given by the previous simple argument can also be
obtained from a calculation of S(γ ) for several arms. If Na arms of length b are attached
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regularly around the ring we obtain

S(γ ) =
(

2 sinh
√

γ b√
γ

)Na Na∏
n=1

[
cosh

(√
γL

Na

)
− cos

(
2πn + θ

Na

)

+
1

2
sinh

(√
γL

Na

)
coth

√
γ b

]
(23)

for Dirichlet boundary conditions at the end of the arms. For Na = 1 we recover (14).
(The spectral determinant for Neumann boundary conditions is given in chapter 5 of [11]).
For short times, t � τL, τb, we get Leff � L + NaLϕ ln(3/2). The term NaLϕ ln(3/2) has
the same origin as the term (2/3)2n in (5): it is related to the probability to cross the Na

vertices of coordinence 3 for a trajectory of winding n = 1 [7]. For intermediate times
τL � t � τb, the expansion of the spectral determinant shows that Leff � √

NaLLϕ ,
in agreement with the above discussion. For large times τL, τb � t , the effective length
reads Leff � Lϕ

√
NaL/b that reflects the absorption of the particle by the reservoirs after

a finite time. For Na = 2, that is for the ring of figure 2, we give the expression of the
effective perimeter:

cosh
√

γLeff = cosh
√

γL + sinh
√

γL coth
√

γ b + 1
2 sinh2(

√
γL/2) coth2 √

γ b. (24)

• Na arms attached at the same point. Note that the study of the effect of several arms
is easier if we consider the case of Na arms attached at the same point. It immediately
follows that

S(γ ) = 2

(
sinh

√
γ b√

γ

)Na
(

cosh
√

γL − cos θ +
Na

2
sinh

√
γL coth

√
γ b

)
(25)

for Dirichlet conditions, which leads to cosh
√

γLeff = cosh
√

γL + Na

2 sinh
√

γL coth√
γ b. In the short time limit, t � τL, τb, we obtain: Leff � L+Lϕ ln((Na + 2)/2), whose

second term originates from the fact that each winding requires to cross one vertex of
coordinence Na + 2 [7]. For large time t � τL, the winding properties are exactly similar
to the case of regularly attached arms.

4.4. Fixing the starting point

In this paragraph, we study the distribution of windings with a fixed starting point x0. We
choose the origin of the Brownian trajectory to be at the vertex 0 for simplicity (see figure 3(a)).
Following section 3.2, we consider the new spectral determinant S(λ0)(γ ) for generalized
boundary condition with parameter λ0 at the vertex 0. It is easy to obtain

S(λ0)(γ ) = S(γ ) + λ0
sinh

√
γL sinh

√
γ b

γ
. (26)

By using (11) we immediately get the cooperon at the vertex

Pc(0, 0) = 1

2
√

γ

sinh
√

γL

cosh
√

γLeff − cos θ
(27)

from which ∫ ∞

0
dt Wn(0, 0; t) e−γ t = 1

2
√

γ

sinh
√

γL

sinh
√

γLeff
e−n

√
γLeff . (28)

In the limit L � Lϕ � b, it reads∫ ∞

0
dt Wn(0, 0; t) e−γ t �

√
L

2γ 1/4
e−n

√
Lγ 1/4

. (29)
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(a) (b)

a

0 0

a a

Figure 4. A diffusive ring attached to (a): an infinite square lattice, (b): an infinite Bethe lattice
of coordinence z = 3. In both cases the bonds have equal lengths a.

The inverse Laplace transform gives

Wn(0, 0; t) = θ(t)

√
L

2t3/4
ψ

(
ξ = n

√
L

t1/4

)
, (30)

where ψ(ξ) = 4
π

Re
(
e−i π

4
∫ ∞

0 du u2 e−ϕ(u)
)
. The function ϕ(u) is defined above. At the origin

we have ψ(0) = �(3/4)

π
√

2
while ψ(ξ) presents an exponential tail:

ψ(ξ) � 4√
6π

(ξ/4)1/3 e−3(ξ/4)4/3
for ξ � 1. (31)

The tail of Wn(0, 0; t) then reads

Wn(0, 0; t) ∝ n1/3

t5/6
exp −c

n4/3

t1/3
. (32)

The exponential behaviour is the same in (20) and (31) while the exponent of the prefactor
changes because we have fixed the initial condition instead of averaging over it.

5. Ring connected to a network

The above examples show that the harmonics of the AAS oscillations of a mesoscopic ring
can change drastically due to the excursion of Brownian trajectories in the arms connected to
the ring. An interesting question is: how are the harmonics modified if the ring is connected
to a network more complex than a wire? An important point is to know whether the Brownian
motion inside the network is recurrent or not (a Brownian motion is said to be recurrent if
it comes back to its starting point with probability 1 after an infinite time). The fact that
the one-dimensional random walk is recurrent is crucial to lead to the behaviour (6), (18),
(29), as explained in section 4.2. In dimension d > 2 the Brownian motion is known to be
transient whereas in the case of d = 2 it is neighbourhood recurrent. Therefore we expect
the dimension 2 to play a special role. This is one of the reasons why we consider below the
case of a ring connected to a square two-dimensional network, as shown in figure 4(a). The
formalism is introduced for an arbitrary network.

First we consider the network without the loop. It is characterized by a matrix Mnet

whose determinant gives the spectral determinant Snet(γ ).
If we now attach a ring at the vertex 0 of the network, the new network is characterized

by a matrix M = Mnet + δM with

δMαβ = A(θ, λ0)δα0δβ0, (33)

where (appendix C of [7])

A(θ, λ0) = λ0 + 2
√

γ
cosh

√
γL − cos θ

sinh
√

γL
. (34)
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Since δM has only one nonzero element, (δM)00, we have

detM = [
1 + A(θ, λ0)

(
M−1

net

)
00

]
detMnet. (35)

This shows that the spectral determinant of the network with the loop is now

S(λ0)(γ ) = sinh
√

γL√
γ

[
1 + A(θ, λ0)

(
M−1

net

)
00

]
Snet(γ ). (36)

Using (11) we have Pc(0, 0) = d
dλ0

ln
[
1 +A(θ, λ0)

(
M−1

net

)
00

]∣∣
λ0=0 that leads to the same result

(27), (28) as when the ring is connected to an arm. It is interesting to note that the matrix
element is related to the Green’s function of the diffusion operator in the network, i.e. the
cooperon at the vertex 0 in the absence of the ring:

P net
c (0, 0) = 〈0| 1

γ − �
|0〉 = (

M−1
net

)
00. (37)

Therefore, we can write the cooperon at the vertex 0 in terms of the cooperon of the network
in the absence of the ring:

Pc(0, 0) = 1

2
√

γ

sinh
√

γL

cosh
√

γL + 1
2

sinh
√

γL√
γP net

c (0,0)
− cos θ

. (38)

Now the effective perimeter is related to the matrix Mnet characterizing the network in the
absence of the loop:

cosh
√

γLeff = cosh
√

γL +
1

2

sinh
√

γL
√

γ
(
M−1

net

)
00

, (39)

which is a generalization of the results (15), (17) obtained for the ring attached to an arm. We
can easily check that if the network is simply a wire with Dirichlet boundary at one end, we
have

(
M−1

net

)
00 = 1/(

√
γ coth

√
γ b), leading to (15). In the limit

√
γL � 1 (i.e. L � Lϕ),

equation (39) leads to

√
γLeff �

√
L(

M−1
net

)
00

=
√

L

P net
c (0, 0)

. (40)

The case of regular networks. It is interesting to consider the specific case of a regular network.
In this case we can write: Mnet =

√
γ

sinh
√

γ a
N where the matrix N is Nαβ = δαβz cosh

√
γ a −

aαβ . The matrix aαβ is the connectivity matrix (see appendix A). We have introduced the
coordinence z of the network. In this case M−1

net is related to the (discrete) Green’s function
of the connectivity matrix G(α, β) = (N−1)αβ , defined by

∑
µ(Eδαµ − aαµ)G(µ, β) = δαβ ,

for an ‘energy’ E = z cosh
√

γ a. It follows that the effective length is related to the discrete
Green’s function of the network at the point where the ring is attached

cosh
√

γLeff = cosh
√

γL +
1

2

sinh
√

γL

sinh
√

γ a G(0, 0)
. (41)

In the limit
√

γL � 1, we have

√
γLeff �

√ √
γL

sinh(
√

γ a) G(0, 0)
. (42)
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5.1. Ring connected to a square network

We now apply these results to the case of a square lattice. The problem left is to estimate the
discrete Green’s function of the square network (figure 4(a)). We have

G(0, 0) = 1

2

∫ +π

−π

d2�k
(2π)2

1

2 cosh
√

γ a − cos kx − cos ky

= 1

2π cosh
√

γ a
K

(
1

cosh
√

γ a

)
, (43)

where K(x) is the complete elliptic integral of first kind. We have a new characteristic time
τa = a2 needed to explore the bond. We now consider two limits of interest:

• Intermediate time τL � t � τa (i.e. L � Lϕ � a). In this limit the Brownian
trajectories starting from the ring can only explore a small portion of the four arms
to which it is connected. Equation (43) gives Leff � √

4Lγ −1/4. This result
corresponds precisely to the case of a ring connected to Na = 4 long arms and we
have

∫ ∞
0 dt Wn(0, 0; t) e−γ t ∝ exp −n

√
4Lγ 1/4.

• Long time τL, τa � t (i.e. L, a � Lϕ). In this case the Brownian trajectories encircling
the flux n times can explore the square network over distances much larger than a.
Equation (43) leads to

√
γLeff �

√
2πL

a ln(4/
√

γ a)
. (44)

The Laplace transform of the probability then reads∫ ∞

0
dtWn(0, 0; t) e−γ t �

√
La

8π
ln(4/

√
γ a) exp −n

√
2πL

a ln(4/
√

γ a)
. (45)

The Brownian trajectories encircling the ring can leak over long distances in the square
network. The effective diffusion in the ring is even slowed down compared to the case of a
ring connected to arms. The number of windings behaves like

nt �
√

a

πL
ln t (46)

(the way to obtain the precise coefficient is explained in appendix B). An argument similar to
that of section 4.2 can be developed to obtain (46) by different means. Since the diffusion is
recurrent in the square network, this latter acts as a trap in which the diffusive particle stays
during a time τ and eventually comes back inside the ring. The distribution of the trapping
time is given by the first return probability in a square lattice that is known to behave at large
times like P1(τ ) ∝ 1/(τ ln2 τ) [12] 5. It can be shown from this distribution that the winding
number scales like nt ∝ √

ln t [13].
The result (45) can be interpreted as the amplitude of the nth harmonic of the AAS

oscillations of the conductivity:

�σ(n) ∝ exp −n

√
2πL

a ln(4Lϕ/a)
for L, a � Lϕ. (47)

5 In this work, the authors considered the survival probability Wabs(r, t) for a particle diffusing from r in the presence
of an absorbing site at 0. The probability for the particle to reach the origin for the first time is proportional to
−∂tWabs(r, t).
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Figure 5. The effective perimeter Leff for the ring of figure 2 with Na = 2 arms, as a function of
the phase coherence length. Leff is given by equation (24). We have taken the limit b � Lϕ . The
dashed line is the expansion for large phase coherence length Leff = √

2LϕL(1 + 11
48

L
Lϕ

+ · · ·). The

thin line is the linear expansion Leff = L + Lϕ ln(9/4) + · · · at small Lϕ . In the inset, we compare
the exact result with the approximation

√
L2 + 2LϕL (dotted line).

5.2. Ring connected to networks of higher dimensions

To emphasize the role of the dimension of the network, let us consider a d-dimensional
hypercubic network. The Green’s function reads G(0, 0) = 1

2

∫
BZ

dd �k
(2π)d

[d cosh
√

γ a −∑d
i=1 cos ki]−1, where the integration is performed over the Brillouin zone. This can be

conveniently rewritten as G(0, 0) = 1
2

∫ ∞
0 dy[e−y cosh

√
γ aI0(y)]d where I0(y) is the modified

Bessel function. (i) In dimensions d = 1 and d = 2, the integral is dominated by the
neighbourhood of �k ∼ 0 (or the domain of large y) in the limit

√
γ a � 1. We can write

G(0, 0) � ∫
BZ

dd �k
(2π)d

1
�k2+γ a2d/2

or G(0, 0) � 1
2

∫ ∞ dy 1
(2πy)d/2 e−yγ a2d/2. In dimension d = 1

the integral diverges as G(0, 0) ∼ 1/a
√

γ , which reflects the recurrence of the 1d Brownian
motion and leads to

√
γLeff ∼ γ 1/4L1/2. The dimension d = 2 is the marginal case:

the integral diverges logarithmically G(0, 0) ∼ ln(1/a
√

γ ) which still indicates a recurrent
Brownian motion and gives (44). (ii) In dimension d > 2 the integral reaches a finite value
G(0, 0) = 1

2

∫ ∞
0 dy[e−yI0(y)]d = βd in the limit γ → 0. Note that βd � 1/(2d) for large

dimensions, that coincides with the result given below for a Bethe lattice of coordinence
z = 2d. The Brownian motion is transient. Therefore

√
γLeff is independent of γ , which

indicates that the winding number nt reaches a finite value in the infinite time limit.

Bethe lattice. Let us consider the case of the Bethe lattice of coordinence z (figure 4(b)) that
models a network with an infinite effective dimension. The Green’s function at coinciding
point is [14]

G(0, 0) = 1

E
F0

( z

E

)
with F0(x) = 2(z − 1)

z − 2 +
√

z2 − 4(z − 1)x2
(48)

We obtain the following behaviour for t � τL, τa:∫ ∞

0
dtWn(0, 0; t) e−γ t ∝ exp −n

√
z(z − 2)

z − 1

L

a
. (49)

This result is similar to that obtained for a ring connected to an arm with absorption at
the end (Dirichlet condition). In this latter case the absorption at the end of the arm is



3468 C Texier and G Montambaux

Table 1. We summarize the results for the winding around the ring of perimeter L connected to
a network. We recall that γ = 1/L2

ϕ allows us to probe the various time regimes since it is the
parameter conjugate to time: γ ∼ 1/t . There are in general three characteristic times: the time
τL = L2 to diffuse around the ring, the time τa = a2 to explore one bond of the network and the
time τb = b2 to reach the boundary of the network of linear size b. Except for the case of the wire,
we have considered infinite networks with b = ∞.

Network Regime Leff(γ ) Winding n2
t

No t � τL L Normal 2 exp − L2

4t

τL � t L Normal 2t/L2

Na arms t � τL, τb L Normal 2 exp − L2

4t

τL � t � τb

√
NaLLϕ Anomalous 2

√
πt/(NaL)

Neumann
τL, τb � t

√
L(L + Nab) Normal 2t/(L2 + NabL)

Dirichlet Lϕ

√
NaL/b Limited 2b/(NaL)

Square τL � t � τa

√
4LLϕ Anomalous

√
πt/(2L)

τL, τa � t Lϕ

√
2πL

ln(4Lϕ/a)
Anomalous a

πL
ln(t)

d-hypercubic τL � t � τa

√
2dLLϕ Anomalous

√
πt/(dL)

d > 2 τL, τa � t Lϕ

√
1
βd

L
a

Limited 2βd
a
L

Bethe τL � t � τa

√
zLLϕ Anomalous 2

√
πt/(zL)

τL, τa � t Lϕ

√
z(z−2)
z−1

L
a

Limited 2(z−1)
z(z−2)

a
L

responsible from the fact that the particle leaves the ring after a finite time. In the Bethe
lattice, since the diffusion is transient, the diffusive particle injected in the ring eventually gets
lost in the infinite lattice. At large times the number of windings in the ring reaches the finite
limit:

nt �
√

2(z − 1)

z(z − 2)

a

L
. (50)

The higher the coordinence, the smaller the time spent by the particle in the ring. The shorter
a, the faster the particle feels the structure of the Bethe lattice and gets lost in it.

All results are summarized in table 1.

6. Conclusion

We have studied the winding properties inside a ring connected to a network. Our analysis
was based on the introduction of the effective perimeter Leff(γ ) that probes the winding at
time scale t ∼ 1/γ . We have obtained this effective perimeter as a function of the matrix Mnet

describing the network that is connected to the ring. The analysis of the effective perimeter
immediately gives the nature of the winding (normal or anomalous) since the winding number
scales with time as nt ∼ √

t/Leff(1/t).
Our study of winding properties was motivated by the physics of quantum transport

through a ring. We have emphasized the importance of taking properly into account
the external wires connecting the ring when studying quantum transport. Experimentally,
the measurement of ratio of harmonics provides a direct way to extract the phase coherence
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length and its temperature dependence (this has been used very recently on large square
networks [15]). In particular assuming an exponential behaviour exp −nL/Lϕ , given by
(2), or the nonexponential exp −n

√
2L/Lϕ , given by (6), leads to very different temperature

dependences of Lϕ(T ). Figure 5 summarizes our main result: we have plotted the effective
length as a function of Lϕ . The linear behaviour at small Lϕ corresponds to (5) and the square
root behaviour at large Lϕ to (6). Since the crossover between the two regimes occurs on the
range L ∼ Lϕ , it is useful to know the nature of this crossover. We note that the effective
perimeter for the ring with Na arms can be well approximated by Leff � √

L2 + NaLϕL which
interpolates between L and

√
NaLϕL (see inset of figure 5). Therefore the harmonics decay

approximatively as exp −n
√

(L/Lϕ)2 + NaL/Lϕ . It is clear from this approximation that the
crossover, that occurs for Lϕ � L/Na , can be more easily reached for a large number of arms.
In a metallic ring, the phase coherence can reach several microns. Therefore, the regime
Lϕ > L/Na seems to be attainable experimentally.

The phase coherence length Lϕ has been introduced as an effective parameter γ = 1
/
L2

ϕ

in the cooperon Pc(x, x ′) = 〈x| 1
γ−�

|x ′〉 in order to describe phase breaking mechanisms.
However, the effect of electron–electron interactions, that dominates at low temperature, is
not well described by such an effective parameter [16]. It has been shown recently that the
behaviour of the AAS harmonics in a ring behaves in this case as exp −nT 1/2L3/2 in the limit
Lϕ � L, where T is the temperature [17]. However this behaviour has not been observed in the
recent experiments [15] on large square networks, in which the condition Lϕ � L is not well
fulfilled. A mechanism similar to the one discussed in our paper could explain the discrepancy
between the theory and the experiment: for Lϕ � L the excursion of the Brownian curves of
finite winding in the surrounding part of the network increases the effective perimeter of these
paths and modifies the dependence of the harmonics in L/Lϕ .
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Appendix A. Spectral determinant

A particularly convenient way to describe the spectrum {En} of the Laplace operator � on a
network of one-dimensional wires is to consider the spectral determinant S(γ ) = det(γ −�) =∏

n(γ + En) where γ is the spectral parameter. If the loops of the network are pierced
by magnetic fluxes the derivative is replaced by the covariant derivative: � → D2

x with
Dx = d

dx
− iA(x).

Let us consider a network of B wires connected at V vertices. The latter are labelled
with greek indices α, β, . . . First we introduce the connectivity matrix aαβ characterizing
the topology of the network: aαβ = 1 is α are β connected by a bond (we denote (αβ)

the bond and lαβ its length). aαβ = 0 otherwise. If we define a scalar function ψ(x)

on the network, boundary conditions at the vertices must be specified. At the vertex α we
choose (i) continuity of the function, that is all the components ψαβ(x) of the function along
the wires αβ issuing from α tend to the same limit as the coordinate reaches the vertex. (ii)∑

β aαβDxψαβ(α) = λαψ(α) where the connectivity matrix in the sum constrains it to run
over the neighbouring vertices of α. Therefore the sum runs over all wires issuing from the
vertex. The real parameter λα allows us to describe several boundary conditions: λα = ∞
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forces the function to vanish, ψ(α) = 0, and corresponds to Dirichlet boundary condition
that describes the connection to a reservoir that absorbs particles. λα = 0 corresponds to
Neumann condition, which ensures conservation of the probability current and describes an
internal vertex.

It was shown in [6] that the spectral determinant is

S(γ ) =
∏
(αβ)

sinh
√

γ lαβ√
γ

detM(γ ), (A.1)

where the product runs over all bonds of the network. M is a V × V matrix defined as

Mαβ = δαβ

(
λα +

√
γ

∑
µ

aαµ coth(
√

γ lαµ)
)

− aαβ

√
γ e−iθαβ

sinh(
√

γ lαβ)
, (A.2)

where the connectivity matrix constrains the sum to run over all vertices µ connected to α.
We have included the magnetic fluxes (θαβ is the flux along the wire). For a more detailed
presentation, see [7].

Appendix B. Time dependence of the winding number

We explain how to compute efficiently the time dependence of the winding number around a
ring connected to a network. For this purpose we compute 〈n2〉t , where the average is taken
for all close trajectories starting from a specified point and coming back to it after a time t:

〈n2〉t =
∑

n n2Wn(x, x; t)∑
n Wn(x, x; t)

(B.1)

(〈n〉t = 0 follows from the symmetry Pc|θ = Pc|−θ ).
To go further we consider the case where the initial condition x is the vertex 0 where the

ring is attached to the network. Then the cooperon has the structure (27). Let us define the
quantity

�m(γ ) =
(

1

i

d

dθ

)m

Pc(0, 0)
∣∣
θ=0. (B.2)

From (9) it follows that �m(γ ) = ∫ ∞
0 dt e−γ t

∑
n nmWn(0, 0; t) which is related to the mth

moment of the winding number. We have

〈n2〉t = L−1 [�2(γ )]

L−1 [�0(γ )]
, (B.3)

where L−1 [· · ·] designates the inverse Laplace transform. From (27) we can obtain the two
general expressions:

�0(γ ) = 1

4
√

γ

sinh
√

γL(
sinh

√
γLeff

2

)2 . (B.4)

�2(γ ) = 1

8
√

γ

sinh
√

γL(
sinh

√
γLeff

2

)4 . (B.5)

Example 1 (the isolated ring). The effective perimeter is equal to the perimeter in this case:
Leff = L. We have �0(γ ) = 1

2
√

γ
coth(

√
γL/2) and �2(γ ) = 1

4
√

γ
coth(

√
γL/2)/

sinh2(
√

γL/2). We consider two regimes:
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• Short times t � τL: We have �0(γ ) � 1
2
√

γ
and �2(γ ) � 1√

γ
e−√

γL which gives after

Laplace transform 〈n2〉t � 2 exp −L2

4t
. This result was obvious from expression (13).

• Long times t � τL: We obtain in this case �0(γ ) � 1
γL

and �2(γ ) � 2
γ 2L3 , which leads

to 〈n2〉t � 2t/L2. This is the normal diffusion.

Example 2 (the ring connected to a square network). We consider the long time limit
t � τL, τa to demonstrate (46). The effective perimeter is given by (44). We find
�0(γ ) � a

4π
ln(16/a2γ ) and �2(γ ) � a2

8π2L
ln2(16/a2γ ). Using the fact that in the limit

γ → 0 we have L−1[ln 1/γ ] � 1/t and L−1[ln2 1/γ ] � 2 ln(t)/t , we eventually find
〈n2〉t � a

πL
ln t .
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